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Overview of the Phase Noise Study

LinCom has investigated the phase noise requirements of a tracking

system receiver when N data links occupy a contiguous system bandwidth

and are used to, in addition to transferring data, obtain time transfer

between (N/2) platforms. The basic concept of time transfer was

investigated under N00014-82-C-2035. In this research effort, the

total system phase noise to achieve the required tracking accuracy

was investigated. The noise sources which contribute to phase noise

are: A
e Filter ISI

se Ideal Filtering

ee Filter Implementation

* Thermal Noise

* Adjacent Channel Interference

* IF Oscillator Instabilities

9 Coherent Demodulation VCO

* Data Spectrum Occupancy in the Tracking Bandwidth

s Doppler

The two basic RF receiving system configurations which were studied

are shown in Fiugres la and lb. The basic concept of RF filter

imperfections is illustrated in Figure 2 and has been defined as

asymmetrical filtering. The basic baseband configuration to track

the data zero crossing is shown in Figure 3.

Given the above receiving system configuration, the vata and time

transfer characteristics were investigated for both NRZ and Manchester

encoding. A discussion of the overall advantages and disadvantages of

these two encoding techniques as well as the advantages of linear vs

biphase demodulation are discussed in another document. The effects

of adjacent channel interference is shown in Figure 4.
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j 2. Single Channel Time and Data Transfer Subsystem Phase Noise Mode

The basic block diagram model for the single channel receiving system at

either the master or slave is shown in Figure 5. The main goal of this

task was to model the total system phase noise. The RF portion of

the system is assumed to be composed of an RF mixer and front end

filter, followed by a coherent phase demodulator to generate the

baseband data waveform. The baseband waveform is then bit decoded using

bit timing extracted in the digital transition tracking loop (DTTL). In

addition to data recovery, the decoded bits contain frame sync words

which are used to establish master-slave timing. Phase demodulation in

the RF section is accomplished by carrier phase referencing, and using

the carrier reference to coherently demodulate the phase modulated RF

carrier. Figure 5 lists the primary design concerns of each subsystem

of the overall receiver. Table 1 lists the key parameters in an

overall receiver specification. Although system models of this type

lack detail for the overall implementation of each block, they do allow

initial scoping of key parameter values and spotlight interface problem

between subsections. In this section the RF subsystem is examined.

Two types of RF carrier modulations are considered. The first is 3

standard BPSK waveform with full (±900) modulation index, producing

suppressed carrier transmission. The data may be NRZ or Vanchester.

Phase referencing is accomplished by a balanced Costas loop, in which

data decoding is accomplished through one arm of the loop. The second

type of carrier is the reduced index (IA<900) PSK carrier which

maintains a residual carrier component. Phase referencing is achieved

by a direct carrier tracking phase lock loop which tracks the residual

carrier, using the reference for coherent bit correlation. Again the

data may be NRZ or Manchester. The latter requires more RF bandwidth,

-7-
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I

but avoids the dc wander and transition density problem of the baseband

decoder.

The RF subsystem should be designed to be transparent to the

baseband decoding and master-slave timing operations. The primary

effects of the RF system on the baseband are:

* Excessive RF filtering that effectively reduces the bandwidth

of the baseband waveform. This produces baseband distortion and

intersymbol interference.

9 Suppression of the baseband power by phase referencing tracking

errors.

* Delay bias in passing through the RF section. This delay must be

compensated or calibrated.

* Introduction of phase noise or carrier instabilities that add to

the phase reference error and cause timing inaccuarcies in the

DTTL.

3 Single Channel Parameters

In this section a model of the modem and a channel is given.

3.1 RF Power and Bandwidth Considerations

The ability of the baseband system to data decode and derive bit

time depends on the available baseband bit energy to noise level,

(Eb/No)b. The latter depends on the RF bit energy, and the modulation

suppression and phase errors in the RF subsystem. The baseband Eb/NO is

related to that of the received RF carrier by

Eb Eb 2 2 (1)

(N-) sin (A)cos (0)
0Ob Oc

where

a RF carrier phase mod index

e reference loop tracking phase error
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Figure 6 plots the required carrier (Eb/NO)c to produce a 10 dB

(Eb/NO)b, for various 6, as a function of phase error ee. Less RF power

is required for BPSK with a given ee. Note that to produce no more than

a 1 dB suppression, a BPSK system can withstand about a 250 phase error,

while PSK carriers require increasingly tighter phase referencing.

Selection of the RF bandwidth can be critical if the filter is too

narrow (equal to or less than the RF carrier spectrum). A narrow RF

filter will produce intersymbol interference that increases both the RF

phase tracking error and the baseband DTTL timing error. Both of these

effects have been separately examined to determine the tightest

restriction.

The effect of bandwidth reduction of a symmetrical filter on phase

referencing was reported by Lindsey and Davidov (National Telecommuni-

cations Conference, Houston, Texas, December 1980) for both NRZ and

Manchester data. Figure 7 shows a plot of their results, indicating

the manner in which the mean squared tracking error increases as the

RF filter BT product is reduced. The error is higher for the Manchester

data since its spectrum is wider. These results indicate that the

intersymbol effect should be negligible at (Eb/No)b values of 10 dB

as long as BT > 2. This corresponds to a RF bandwidth requirement of

at least 25 MHz.

The second concern is the effect of narrow RF filtering on the DTTL

operation. The intersymbol effect causes waveform spillover on to the

subsequent data transitions, which increase the transition tracking

errors. This effect is analyzed in Section 2.2.4 using an ideal

bandlimited waveform model. A link simulation was also carried out, in

which more general waveforms and filter shapes can be analyzed. The

principle results of these studies are shown in Figure 8. Here the

-11-
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rms bit timing error produced by the DTTL is shown as a function of the

RF bandwidth directly, for different DTTL tracking bandwidths. As the

RF filter band is reduced, the intersymbol interference is increased on

the baseband waveform, which increases the transition noise and the DTTL

timing error. Because of the extremely tight timing requirement on the

bit synchronizer (as opposed to the requirements for phase reference

accuracy) the timing effect is more important for setting the RF

bandwidth than the phase referencing. As observed in Figure 2-8, an rms

timing error on the order of 1 nanosecond requires an RF bandwidth of

about 100 MHz for a 1 KHz DTTL bandwidth. Manchester data requires

about twice this bandwidth.

3.2 RF Carrier Referencing

Coherent demodulation of the RF carrier requires accurate phase

referencing. Phase reference errors will be due primarily to:

o Doppler tracking of the received carrier

o Thermal noise in the loop bandwidth

o Phase noise of the oscillator

* Modulation tracking phase error

The manner in which the phase error is derived from the above effects

will depend on whether PSK carrier tracking or BPSK Costas tracking

must be used. If fd is the RF Doppler frequency and fd is the Doppler

rate, then the loop phase error is given by

214 d

ee -2 d (2)
Wn

i

-13- 1



I

f = acceleration component

n= loop natural frequency

The mean squared phase error due to thermal noise of level N0 at the

loop input is given by

2 BL T 2 ]-1a =  bLT [cos2 W , PSK (3a)

(Eb/No)c PS

2 BLT 1 ], Costas BPSK (3b)
0 = (Eb/NO)c [1 + 1 (EbNOc

A plot of this rms phase error a is shown in Figure 2-9 for both

the Costas and PSK carriers.

BL < 250 KHz (4)

This provides an equivalent phase error of about 30 for Eb/N0 = 10 dB.

During a degraded mode of operation, where Eb/NO < 10 dB, the bandwidth

will be made smaller. The lower bound will be determined by the

carrier VCO phase noise.

In addition to thermal noise, the RF tracking design must be

concerned with the phase noise infiltrating the loop. The principle

contributors are the transmitter oscillator, the RF mixer oscillators,

and the VCXO in the reference loop. If we denote the spectrum of each

of these sources as

,0(w) = phase spectrum of received RF carrier

& m (w) = phase spectrum of RF mixer

f0(w) = phase spectrum of loop VCXO

w = frequency relative to RF carrier center frequency

1
I -14-
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then the mean square phase error contribution by these sources is

2r'-+2 +2- 2d

a 2 1 I[€0( ) + 0m(W)H11lH(W) 2  + 2 f 0 (w)t1-H(w)I dw

(5)

where

H(w) = carrier tracking loop gain function

r = rate of RF to VCXO rest frequency

The r factor accounts for the frequency multiplication of VCXO phase

-noise to the RF tracking frequency.

To bound the VCO phase noise process specifications for VCO's

which have been built will be examined. For example, specify the

VCO phase noise power spectrum not to exceed

s(f) =

for all f. If H(f) denotes the closed loop transfer function of the

tracking loop, the VCO phase noise related interference power P can
Os

be computed from Equation 5. To simplify computation of interference,

let F0 denote H(f) cutoff frequency. The VCO phase noise power is

approximately given by

Pos 2 f S(f)df
F0

Therefore

os - F ()3 = .5 x 10-3 x F-4

-17- 0



For F0 > 5 Hz, we have

P~os -

Previous experience in developing the down converter chain

indicates that an Allen variance of 20 rms is possible. Numbers on

the order of this magnitude do not raise a problem in system operation.

The final error source to be examined is caused by tracking the

modulation signal in the single channel case. In Appendix 1, the

two cases considered are:

1) Costas loop tracking error for BPSK modulation, and

2) Carrier tracking loop phase error caused by delta

modulation.

It is shown that for Manchester coded signals, the tracking error

is negligible for a BLT product much less than the data rate and for

NRZ, the BLT must be less than .01 for acceptable tracking performance.

3.3 Bit Decoding

In addition to accurate bit timing, the baseband subsystem must

also provide accurate bit decoding. This is particularly important in

the master-slave timing method using coded error transmission, since

decoding errors transfer directly to sync errors. The probability of

bit error in decoding the data bits following RF carrier demodulation to

baseband will depend on the baseband (Eb/No)b and the RF carrier

tracking accuracy. Figures 11, 12, and 13 show the manner in

which bit error probability PE varies with Eb/NO for various rms phase

tracking errors and bias error offsets. For PSK referencing with

A * 900, a required PE = 10-5 requires a phase tracking rms error of no

more than about 100, or a tracking loop SNR such that

-18-
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I

(Eb/No)c 2
(E cos 2(A) 12 dB (6)BL T

Hence as A is increased to 900, a larger RF Eb/NO is needed to prevent

the phase referencing from degrading the PE. With Costas loop tracking,

the decoding and phase referencing are both accomplished directly within

the loop, and the decoding bit error probability is given by

1
PE = 2 erfc (A) (7)

where

A2  = (Eb/NO)c[Il(P)/lO(P)] 2  (8)

~and
a (Eb/NO)c -1

BLT [1+(Eb/N o )  (9)

At the Eb/N 0 values expected, little degradation to the bit decoding

occurs from this phase referencing.

4, Single Channel Error Sources

The single channel error sources are discussed.

-21
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4.1 DTTL Bit Jitter

Bit sync for baseband data decoting is achieved by a digital

transition tracking loop that time locks on bit transitions (or pulse

transitions in the Manchester format). Since this operation sets the

bit timing, it therefore becomes a key element in the overall sync

operation.

The DTTL has the block diagrams in Figure 14. The input to the

DTTL is the baseband waveform demodulated from the RF subsystem and

$ filtered to a bandwidth W. The error detector is a waveform integrator

followed by a sampler timed by a count-down counter. The nominal

sampling rate is obtained by dividing down the 400 MHz clock to the bit

rate of the baseband data. The accumulator sums over a number of error

samples to generate the error control voltage and the limiting function

can be a hard limiter on a deadband limiter. The hard limiter senses

the sign of the error voltage to add or delete a clock tick for timing

adjustment. If a deadband limiter is used, allowance for a voltage

range where no adjustment is made is present. The error detector

operates by effectively integrating over the bit or pulse transition for

error magnitudes, and simultaneously integrates over each bit or pulse

for sign determination. A full integrator integrates over a complete

bit and therefore collects the maximum signal energy. A partial

integrator uses only a portion of each bit, but collects less noise.

Consider first the case when the RF filter is wideband enough so as

to not distort the pulse shape. The error detector then converts a time

error e to a voltage sample with gain 2A, where A is the pulse

amplitude. This error sample also contains noise due to the baseband

noise in the loop prefilter. The accumulator sums over m voltage

-22-
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samples to produce the error control signal. The noise enters as random

samples with variance a2 = NoB where B is the pre-filter bandwidth.

We wish to determine the ability of the DTTL loop to track

frequency instabilities, such as offsets due to doppler on the received

carrier. The DTTL sampling frequency is 400 MHz/N, and its sampling

period is Ts = (N/400) microseconds. Let the input baseband bit

stream occur at a period Tb = Ts + xTs, where x is the percentage change

caused by a doppler offset due to a velocity V. That is, the bit rate

clock frequency is

1 V~ 1]*1 (10)
5 5

where C is the speed of light. The bit period is then

Tb = I+(V/C 1I
s

Ts(1+ V 1

Z (I+x) X << 1 (1

where Ix I = V/C. A difference of periods between the received and local

clocks means the timing difference, if uncorrected, will continually

slide apart. After i periods the timing error will be

e = Ts - Ts (1-ix)

= ±ixT (12)s

The build-up in timing error occurring over the accumulator time of the

DTTL must be corrected by the loop to prevent loss of lock. The loop

will pull-in the offset if the accumulated time error is less than to

sec, the maximal amount that can be corrected by the loop in one sample

-24-
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time. Hence, for the fractional offset x, we requireI
m

ixT s  C t o  (13)

or

XTs (m+1)m/2  • t o  (14)

I: For the given x we therefore require an accumulation of time

m 2 (-XI-1/2 (15)
S

Equation (15) is plotted in Figure 15 as a function of x for the case

of to/T s = 12.5 x 106/400 x 106 = 1/32. The plot is also shown in terms

of velocity V. Note that for velocities on the order of 150 met/sec,

accumulations as large as 105 can be tolerated.

To determine the effect of noise on the DTTL, we compute the

tracking error variance due to the noise samples. Assume the tracking

error samples remain constant during the accumulation, while the noise

samples ni at each sample are independent Gaussian variates with the

variance in 02-- NoBL. The timing correction in the hard limited DTTL is

made according to the limiter output

y = sign[mAe+n) (16)

where
M

n = ) ni  (17)
i=1

If the loop is in lock (lel (to/2), then in the absence of noise, the

loop will remain in lock, achieving a steady error of

A -25-1
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I
e0 = +to/2

= ±1.25 nsec (18)

I With a hard-limiter, the loop will jump between these values, and (18)

is the inherent DTTL quantization error. With a deadband limiter, the

loop error will stabilize with any error within ±to/2.

5 To determine the effect of noise, we note from Figure 14 that the

error will evolve as a random walk process. For a given error the DTTL

9 will correct in the proper direction as long as the accumulated noise n

g in (16) does not change the sign of e. If the sign changes, the loop

will correct in the wrong direction, and the loop error will increase.

* Assuming an initial timing error of +to/2, the steady state mean squared

timing error will evolve asi
2 t 0  3to 2  5to 2

2 (n + (7j P1 + (-i) P1P3
"'"  (19)

I where P3 is the probability that a change in sign occurs, due to noise,

when the loop error e is jto/2. The probability of this occurring

I depends on whether a hard-limiter or deadband limiter is used (see

Figure 16). It follows that

i p. = Q

where (ito/T)_]2

I

-'2
me

I 2  Jto 2

0 L )ITT (--T=)

j~m(E b/No) (to/T) 2(118L T )  (20)

-27-
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The rms timing error can be approximated from the first two terms of

(19). ThusI
to 2 11
'j!!)~- [1+3 P1 j /

(1.25ns)[1+9P 1
1 / 2

The above a is plotted in Figure 17. The result shows that a BLT no

smaller-than about 10-3 is needed to insure the noise does not increase

the tracking error much beyond the inherent quantization error (1.25ns),

when Eb/No = 10 dB. This corresponds to a loop noise bandwidth of less

than

BL = (10- 3 )(12.5xi0
6)

= 12.5 kHz

As the baseband Eb/NO is decreased (due to lower RF Eb/NO or

increased RF phase error) the rms timing error increases. Figure 2-18

shows how a varies with (Eb/No)b. As the latter is incrased a wider

DTTL bandwidth can be used.

4.2 Effect of RF Symmetric Filter on DTTL Performance

In this section, we examine the effect of RF bandpass filtering and

RF carrier demodulation on the performance of a DTTL timing subsystem

I used for baseband bit timing. As has been shown earlier, the accuracy

of the bit timing effects the overall accuracy of master-slave timing

and all distortion effects must be considered in deriving its

performance.

I -29-
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Consider the system in Figure 19. The demodulated baseband data

waveform at xI is given by

m x1 (t) = (A cos ec ) X d-p(t-jT) + noise (21)
j=-- nm where

dj = 1, sequence of data bits

p(t) = filtered PCM or Manchester waveform

T = bit time (12.5x0 6 )-1 sec

A = baseband waveform peak amplitude

The noise is white Gaussian with spectral level No . The DTTL uses

analog baseband pre-filtering, and A-D digital tracking. The pre-filter

integrates over a bit time T for bit detection (T/2 for Manchester), and

integrates 2T for transition tracking (T for Manchester). The variance

of the DTTL timing error is given by

2= BL INo + '2T 
(

A 2 erf(A)
1/2

where

BL = tracking loop noise bandwidth

-212T = mean square intersymbol interference over 2T sec intervals
- 2T j

= [U p(t-nT)dtj2  (23)
n=-m 0
n*O

A E (24)
1T

E N (A 2 +TT1 T ,2
E-(A T) cos (eC)T p (t)dtj (25)

0

-32- 3
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The erf function accounts for bit errors in the DTTL bit detection

loop. The parameter a2 is the normalized timing variance relative to

the bit time T. The variance above is based on a Gaussian intersymbol

3 contribution, and is a worst case value, assuming a least favorable bit

sequence.

It is convenient to denote

E -6 mEb (26)

with

2
Eb = A T (27)

2 1 T 2
m =(Cos e,)[ 1 f p (t)dtl (28)

0

The term Eb is the pulse energy (bit energy for PCM signals)

corresponding to an idealized square pulse. Thus the parameter m

accounts for energy degradation due to pulse filtering in the RF and

imperfect phase demodulation. We then can write

2

2 TBL[ + 211/ (29)
(Eb/NO)erf(A)1"2

and

mEb/No

A T1+ (30)

with N NOT being the integrated noise in T sec. Note for the
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I2
iTI= (AY,)(2T7
N N A AT

,E
2T 2 (31)

0

where f2 is the normalized intersymbol effect given by2T

A2  - 2T 2
12T 1T ] p(t-nT)dtj

2T J~
A T n= - 0

I1 = nO 2T

I [ T f p(t-nT)dtj2  (32)
n=--  0

n*O

Hence, I is the sum of squares consecutive 2T sec integrations over2T

tails of the data awaveform. In essence, '2T is the normalized

contribution of the intersymbol effect of all previous pulses on to each

2T sec integration of the DTTL. We then have

TBL Eb ^2

02 T0~l 11 (33)
(Eb/NO)erf(A/ 2) (33)

and

mEb/No
A b 0Eb (34)

Eb .2
11+ ~IT]

0
These equations show that timing performance will strongly depend on the

amount of intersymbol interference and on the achievable Eb/NO. If the

intersymbol effect is minimal, so that

(Eb) i2 << (35a)

E
01Cb cx 12 (35b)

N0 T l(3b



I

we have

I o2 TBL (36)

i (Eb/NO)erf[mEb/No)l 2

and the DTTL performance depends only on the Eb/NO and its degradation

through the m parameter. As the intersymbol effect becomes significant

I (reversing the inequalities in (15)) however

2 ~ TBL(12T)
2

erf(m/i T)I/2 (37)

The last term represents an inherent, irreducible tracking variance that

does not depend on Eb/NO. This therefore cannot be controlled by signal

strength, and is a function of the RF filtering applied to the carrier

waveform. As this bandwidth B decreases, p(t) is extended in time, and

I2 is increased. The quantity in Equation (37) is a normalized time variance
2T(f

Figure 20 plots the rms tracking error vs (12) rms for severol loop

bandwidths BL. If the mean square interference j2 can be determined, a
2

can be estimated from the figure. In the following sections this

I interference is derived from both an analytical (pulse model) and

simulation approach.

Analytical Study of Symmetric RF Filtering

I We consider the RF filtered pulse

I
I
I
3 -36-
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Figure -20. Jitter vs Intersymbol Interference.
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I
I

I p(t) = s t 0 (39)

I corresponding to an ideal PCM bandwidth of B Hz. Equation (32) then

becomes

j)2 2 (n+l)T sin(2rBt) 2

S(I)2 : X [dtj (40)

n=1 nT (2wBt)

IDefine

a
S.(a) f0 sin(a) da

S0 a
Then

1 2=L 1 [Si (27ryk)-S i (21tyk)]
2

I with 
ik=1

y = BT

The intersymbol value can be determined by computing the sum shown

above. The results are tabulated in the table below and plotted in

I Figure -21.

BT 2

.1 .3369

.5 .38

1.0 .0976

2.0 .022

10.0 gx10 "5

Table
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Figure 21. Jitter vs BT.
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The results show the intersymbol effect for a PCM baseband waveform with

a baseband bandwidth of B. This can be converted to an equivalent RF

bandwidth around the carrier frequency. The result is shown in Figure

22 for a 12.5 Mbps bit rate. The bit timing error as a function of RF

bandwidth is summarized in Figure - 22.

Simulation - Symmetric RF Filtering

I A simulation study was implemented to obtain an alternate assessment

of symmetric RF filter effects. A more detailed DTTL block diagram is

presented in Figure 23. The lower branch of this loop combined with

the preceding RC circuit, acts as a mid-bit integrator which integrate

the waveform over a bit period. If the loop is in perfect sync , the

ft integration period starts at the middle of each bit. Any timing error

in the loop displaces the integration period producing a nonzero error

I term. The error quantity is accumulated by the digital filter whenever

a data transition is detected in the upper branch. The polarity of this

error depends on the direction of the associated data transition and is

also controlled by the upper branch. Figure 24 illustrates a one-zero

bit pattern. The difference between the shaded areas A and B is used as

1the error term in the loop. A nonzero error will force the loop for

automatic correction.

In the case of a nonsymmetric pulse or the presence of ISI, the

3 total shaded area of Figure 24 will not vanish even when the synch is

achieved, and thus the loop will incorrectly assume a different timing

I position with respect to data. In practice, because of limitations of

the overall system, ISI will be present. Hence, contribution of

waveform distortion to the loop must be considered. Since a typical

communication system contains many units or filters with linear

I -40-
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I

behavior, a reasonable approach would be to model the overall system by

a linear filter of proper bandwidth and roll off characteristic. Here,

it is assumed that the system frequency limitation can be modeled by a 5

pole Butterworth filter, and we would like to specify the RF bandwidth

such that the ISI contribution to the loop becomes negligible. The

baseband signal under consideration is of NRZ type.

The effects of waveform distortion on bit synchronizer can be viewed

as an introduction of a jitter and a DC error in the loop. The DC

error is due to asymmetry of a pulse while the jitter is a result of

pulse tail contribution of the previous bits to the integration

interval. Since only adjacent pulses of different polarity can

contribute to the error term in the loop, Figure 25 illustrates a

distorted one-zero bit pattern. Quantity IA-BI of this figure is

actually the DC timing error in the loop if proper scaling is done.

This error can be measured in percent of the bit time, i.e., a 50% error

corresponds to the area under one bit.

The jitter in the loop is caused by the decaying, but nonzero,

tails of infinite number of pulses transmitted earlier than the bit

under consideration. The contribution of these tails to the integration

interval is of statistical nature and, in general, is difficult to

derive its distribution. However, an upper bound can be established for

the timing jitter by summing the absolute values of contributions due to

a finite number of pulses.

Figure 26 illustrates a single pulse function after ,idergoing a

five pole Butterworth filter of BT = 2 (B stands for RF bandwidth, T is

the bit time). The dotted curve of the same figure corresponds to BT -

200. The ringing phenomena at the edges, BT = 200, is due to limited

I-4 -44- ;
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rii
resolution of the simulation package. Figure 27 illustrates the case

of BT = 10 and BT = 50. Figure -28 shows a one-zero bit pattern for BT= 2

and 10. The shaded area (BT = 10) of this figure corresponds to DC

.1 timing error.

Figure 29 illustrates the timing error versus BT (product of

bandwidth and bit time). For a PCM baseband waveform, B stands for RF

bandwidth while for Manchester code, it represents the baseband

bandwidth (multiply by 2 to get RF), and T stands for bit time. For a

data rate of 12.5 Mbps, T equals 80 ns. Chip time is also 80 ns for PCM

code, but it equals 40 ns for Manchester code. The solid curve

indicates the worst case jitter while the dashed curve shows the worst

case DC error. It appears that the jitter term vanishes more rapidly

than the DC term. Note that the jitter is averaged out by the narrow

loop, while the DC error depends on data transition rate and is not

averaged out by the loop.

To generate curves of Figure 29, frequency domain filtering was

performed with each bit represented by 64 samples with frequency

spectrum sampling resolution of 64/2048 or 1/32. The software accuracy

is shown in Figure 29 by dotted straight lines. With a spec of 2.5 ns

quantization error for the digital oscillator, the rms accuracy of the

oscillator is also shown in Figure 29. The dotted straight lines

represent this accuracy for- a PCM waveform (chip time is 80 ns),

and the dashed straight lines illustrate the same accuracy for a

Manchester coded waveform (chip time is 40 ns). Incidentially, the

software accuracy and oscillator accuracy for PCM case are approximately

equal.

To select the desired filter bandwidth, plots of Figure 29 can be
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I
utilized. One reasonable criterion to select the bandwidth is to choose

a BT value that the DC timing error remains smaller than the rms

oscillator accuracy at least by a small margin. Application of this

method to Figure 29 reveals that the BT requirement for PCM signal is

i 7 and for Manchester signal is 10. The equivalent RF bandwidths for the

above two cases are 87.5 MHz and 125 MHz, respectively.

i Figures 30 and 31 illustrate the timing error due to 3 and 10

pole filters, respectively. The following table summarizes the results

i for 3, 5 and 10 pole filters.

Figure 32 illustrates the timing error due to a 10-pole phase

equalized Butterworth filter. It apears that the DC error is completely

i diminished and thus the requirements are determined by the jitter

term. The required RF bandwidth is approximately 15 MHz for PCM and 30

I MHz for Manchester signal: a considerable saving compared to

unequalized system.

i
!
I
I

I
I
i
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4.3 Simulation - Phase Error Processes Caused By Asymmetric RF
Filtering

Although phase-locked loop performance evaluation in the presence

of thermal noise is very well understood; the effect of intersymbol

interference on loop performance has not been fully investigated. In a

recent work by Davidov [1], the performance of first order BPSK Costas

loop in presence of band limited channel was considered. This work

included a study of the phase error process and consequently showed that

this process consists of three terms: the noise free, zero seeking

error signal, the ISI noise, and the thermal related noise. Because the

error process is cyclostationarity, it was possible to derive the

equations for all three components of the error process by performing

time averaging operation over the bit period T and also utilizing

Fourier series expansion.

This work has been extended for the case where the channel filter

is asymmetric. The main objective is not to explicitly derive the

probability density function (pdf) of the tracking phase error process

*, but to examine the problems created by asymmetric RF filtering of

data and hence suggest a specification technique for such RF filters in

a time transfer system's context.

The Error Process in a First Order Loop

Let s(t) denote the bi-level baseband signal. If am can only

assume one of the two values tvs with equal probabilities, this signal

can be presented as

s(t) = Y amp(t-MT) (41)
m

where p(t) represents a pulse with duration T. After modulation is
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1 performed by the mixer, an RF signal of form s(t)cos(uot+f) is generated

* where ub is the carrier frequency, see the Figure 33 below.

BASEBAND
IFILTER

~TRANSMITTER
s(t) RF CHANNEL CHANNEL

MODULATU.I RECEIVER
IL ER DOWN CONVERTER

I
COS(Wot+0)

~BASEBAND

IFILTER

I

j Figure 33.Modem Configuration for Costas Demodulation.

The output of the asymmetric RF filter is no longer a single inphase

j signal. This output consists of a pair of signals in quadrature. The

inphase and quadrature signal components are given as

SI(t) = amgI(t-mT)

(42)

I SQ(t) = amgQ(t-mT)

I where gI(t) and gQ(t) are the I and Q filter responses to a pulse of

duration T, as shown in the figure below, 34.

S-55-



S1)-Co SIM Ccos Wot + S Q t)si wot

FITE

I Figure 34. Asymmietric Fi'ltering.

The I and Q filter transfer functions are defined by

H1 (f)+H 2(f)

H1(f) 2

(43)

HQ(f) = H2(f)-H,(f)

where H-1(f) and 112(f) can be obtained from the asymmetric filter

transfer function, H(f), as

H1(f) =H(f-f 0 )U(f-f 0 )

H(f H(f+f0)u(f0-f)

It can be shown that the tracking error process is given by

fe(t) = 1. [s2 (t)-s 2(t))sin 2* + s, (t)sQ (t) cos 2# + n(t) (44)

I where n(t) is the thermal noise related interference. If the RF filter

were symmetric, HQ(f) and consequently sQ(t) would become identical to

1 -56-



zero. Therefore, in the symmetric filter case, e(t) is given by

e~t) = 1~ s2(t) sin 2 + n(t) (45)

where s(t) is the symmetric filter response to the signal.

Computation of the ISI Noise

Let's substitute equation (42) in (44)

P 22e~t) = j a~ [g,(t-mT)-g Q(t-mT)]}sin 2
m

+ g1 (t-mT)gQ(t-mT) cos 2 + u(t) + n(t) (46)

where u(t) is the 151 related noise consisting of three terms u~)

u2tand u3(t) given as

ui(t) a a 9 aag(t-mT)gj(t-nT) sin 2o
2M*nmnI

u(t a a (tm~ (-T sin 2o (47)
2(t) M*n n9

u3(t) a m aan g1 (t-rnT) gQ(t-nT)cos 20
M*n

For the cyclostationary process e(t), the noise free zero seeking

voltage is given by

f(O) =K f IT Ig [(tT)gQ(tmT)Jsin 20
0Om

where K is the loop gain. Since f(O) is a periodic signal, it can be
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1expanded in a Fourier series and using the Poisson summation formula one

* gets

f(O) = Ks [fJ I2 df-fIGQfI 2 dflsin 20 (48)I ~ ~r T QI11 fId

I Using the same argument, it can be shown that

IKP 5 I g,(t-nT)gQ(t-nT) = KP~ S GI(f)G*(f)df (49)
nQ

The quantity in (49) indicates the bias in the loop. Thus, the phase

Ibias OBis given by
1 1 2f G1(f)G*(f)df

B arctan(- I
2df2 (50)

From the above equation one can see that can vanish only if

D f JGI(f)G*(f)df = 0 (51)

IIf G(f) denotes the Fourier transform of p(t), then

G1(f) = G(f)HI(f) 
(2

Hence, 
G Q(f) = G(f)H Q(f)

Hence, JG(f)j 2 H(f)H*(f)df (3

3 To understand D better, let's write H1(f) as

I -58-



*H 1(f) = a(f) + jb(f) (54)

where a(f) . 2b(f) are two real functions. It can be seen that

11 2

D = -j CO jG(f)j a(f)b(-f).a(-f)b(f)df

Net or cmuetepwr pcrldniis fu~) 2 n u(55)

S fg D2 1 -I IG f MI 21G(-+ (-f)1f2Jdf
u s0 ,M

at f=0 0 Th reut ar stte below T d

1 MI (1 1Gf)I 2 dfsin2 si2

T (f IG Q~fId))i 2

S (=O') Kp2[ 1-X 1 G, (f)GQ(-f)G, (m -f)G (f- m~)df

1 4. I GI(f)G*Q(f)G* 1 (A-f)G ()X-f)d).df] cos 22*

(56)

Since three noise terms u10u2, and u3 are correlated, the cross spectral

densities of these noise terms at 1=0 are in general nonzero. These

cross densities have not been evaluated here to keep this memo brief.
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I
U The Demodulated Signal

3 The demodulated signal M(t) which appears at the I arm of the loop

is described by

I
M(t) = sl(t) Cos O+ SQ(t) sin 0+ n(t) (57)

A nonzero phase error 0 distorts the demodulated signal in two ways.

First, it decreases the signal power proportional to cos2 0, second it

introduces an interference term with power proportional to sin 4. This

interfernce can only be eliminated by a symmetric RF filter or the

condition that sin 0 = . Since the asymmetric filter will generate a

bias in 0, hence the interference waveform will distort the demodulated

signal unless the condition given in (55) is met.

Conclusion and Suggestions

It appears that asymmetric filtering of the signal in the RF domain

generates two deleterious effects:

1. Introduction of additional ISI terms in the tracking loop;

hence, increased interference power in the loop.

2. Addition of a bias term in the phase noise process.

To eliminate the above stated problems, the RF domain filtering at

the front end of the tracking loop symmetrical or it must be avoided.

Assuming that the asymmetry in the RF filter is caused by hardware

inaccuracies, a practical method of avoiding distortions due to

asymmetric filtering would be to perform the filtering task in baseband I
at the arms of the Costas loop. By utilizing this technique, the ISI

distortion in the loop will not totally disappear but it will lessen.

The bias error in the loop shown in Figure 33, however, will totally
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i
I vanish. A series of illustrative examples are given in ~pendix II.

U
I
I
I
I
I
1

I
1 4

I

I
I
I
I

II
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4.4 System Phase Noise Caused by Adjacent Channel Interference

The purpose of this section is to determine the minimum necessary

spectrum separation between two adjacent channels in a single

communications terminal in order to eliminate the interference (ACI)

phenomenon. The signaling format is biphase NRZ. To avoid intersymbol

interference (ISI) in each channel both transmitter and receiver filters

(Chebyshev) are assumed wideband. The interfering adjacent channel

power is given to be 110 dB above the desired signal. It is also

assumed that matched filtering technique is employed for detection of

the NRZ data.

An approximate analytical approach is first used to select the

suitable channel separation AF', where bF' is in units normaalized to

the data bandwidth. A computer simulation program is subsequently

utilized to obtain the answer more accurately. The two approaches

provide similar results.

Assume the symbol rate is unity and that both transmitter and

receiver filters are 6-pole with a normalized bandwidth 4. Let's

investigate the problem with a frequency separation of AF = 12.

Observing Figure 35, the adjacent channel is filtered as

JH(f)1-2 = [2k1+I2f2)][1+(.5f)12][l+.5 1 2 (f-12) 1 2 ] (58)

In the above equation, the first term corresponds to a matched filter

associated with the data rate of unity, the second and third terms

correspond to two 6-pole filters centered at F=O and F=12,

respectively. Since the maximum interference power occurs at F=12, it

is constructive to compute IH(f12)1 2 ,

-62-
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I

IH(f=12)1- 2 - 2(1+1440)(1+612) ~ 6.3 x 1012

or
IH(12fl = 1.6 x 1013

Now we may compute the power leakage by multiplying the above term by

the power in the adjacent channel. Let PL denote the power leakage

P = 1 1.6 x l013Ps = 1.6 x 10-2ps

where PS denotes the desired signal power. Thus, the above power in dB

is

P L~

10 log TV- : -18 dB
s

The computed adjacent channel attenuation seems sufficient to eliminate

the interference.

Actually, the above analysis is rather a conservative one. To

illustrate this, a computer simulation program is utilized. Here it is

assumed that the modulator produces ideal NRZ pulses and also further

assumed that the receiver carrier synchronizer and the bit sync circuits

are error free. Figure 36 illustrates PE versus Eb/No for a number of

channel separations where the bit rate is 12.5, Chebyshev filters are 50

MHz with .25 dB ripple. It appears that 125 MHz channel separation is

sufficient for almost totally eliminating ACI. According to our

previous conservative study, a separation of 150 MHz would attenuate the

interference to 18 dB below the signal power.

Figure 37 illustrates the same situation with 6-pole Chebyshev

filter bandwidth increased to 100 MHz. In this case, a separation of
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(6-POLE)

-66-



250 MHz can totally eliminate the undesired interference.

ACI in Costas Loop

Again we assume that the biphase NRZ data has a normalized rate of

1 and the channel filters are 6-pole with a bandwidth of 4. Further it

is assumed that the channel filters prior to the Costas loop are 2-pole

with bandwidth 4. The major power leakage in this scenario happens in

frequencies between 0 to 2. Observing Figure 38, the following

approximate calculation can be performed

P L 2 IH(2
.251H(10)1 T(10) + 1H (12H137(12).'

where H1 denotes the 6-pole transmitter filter, and S denotes the

interfering signal power average spectrum in the neighborhood of the

desired frequency,

S(f) if( 1
But

sin 2 Pf = .5

Thus

LP _ IHI(10)I 2  .5 + IH1(12)12 .5
F 100 F2  1 144w2

But

2 1 4 x 10- 9

IH1(12)12 _ I  _ 5 x 10 1 0

*The factor .Z5 results from IHI(2)1 4 .
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I

Thus if v2z0

P1I = .25 x .5 x 103 x 4 x 109 + 3.5 x 10-4 x 5 x10 1 0

.5 x 1012 + 17.5 x 10"1  ~ 7 x 1013

Since P = 1011 is given

PL = 1011 x 7 x 1013  = .07

The interference power of .07 must be summed with the white noise power

to illustrate the true performance of the Costas loop. For example, if

the SNR at the front-end of the Costas loop is 10 dB in the absence of

ACI, in the presence of ACI the SNR is given as

(SNR)with ACI .1+.0- = 1

7.7 in dB

It appears that ACI distortion is equivalent to a loss of 2.3 dB in the

input to Costas loop. Since the loop signal-to-noise ratio is much

higher than the input SNR, the loss of 2.3 dB can easily be tolerated.

In a narrowband loop, loss of 2.3 dB increases the phase jitter by 30%.

ACI in DTTL

Since the DTTL loop acts as an integrate and dump circuit, the

matched filtering approach discussed earlier for estimation of the error

probability also holds here. To use the result already obtained, we

notice that the interference power entering the DTTL is .016 if the

-69- 1



signal power is taken to be 1. The interference power must be added to

the thermal noise power to get the correct result. For example, if SNR

10 dB in absence of ACI, then the new SNR is

SNR = 1

SNR in dB 9.4 dB

This figure indicates a power loss of only .6 dB, which considering the

narrow DTTL loop bandwidth, is negligible.
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5 Summary of Link Specifications

This summary illustrates the communication channel specifications

for reliable time and data transfer performance.

5.1 Single Channel Time and Data Transfer Subsystem

The single channel master/slave synchronization is achieved by the

balanced technique as summarized below. The balanced system uses timing

error control at the slave. The timing errors measured at the master

are encoded and transmitted as a digital word in the frame to the

slave. The decoded timing error word is then combined with the bit sync

error measured at the slave to adjust the slave frame timing derived in

the outer loop to derive its frame markers. The latter formats the

j slave frames, which are returned to the master.

It is shown that the above technique will operate in a stable mode

only if the inherent stability error produced by the clocks over a frame

period is smaller than the slave clock period to (2.5 ns). It is also

important that the master and slave modems are calibrated to avoid

timing bias.

Master slave timing analysis has revealed that the performance

upper bound of this system is equal to to/2. In general, depending on

the bit sync performance and the Eb/NO ratio, the timing jitter may

become considerably larger than to/2. It is shown that accumulation of

two or more error samples to control the slave timing is helpful for

approaching the above performance upper bound.

Single Channel Time Bandwidth Product BT

In this study channel bandwidth limitation and its effect on the

bit sync (DTTL) was considered. An analytical method and a computer

simulation were employed to determine channel BT product such that:

-71-



S I

First, the DTTL jitter is less than the VCO quantization error; second,

the DTTL bias is less than the VCO quantization error--VCO quantization

error is about 3% of the bit time T. For the first constraint, the

analytical method has selected a hypothetical worst case pulse shape,

namely the sinc function. The integrals taken over periods T of the

tail of the pulse were computed analytically. The computed values were

squared and then summed to form the ISI power in the bit sync. Using a

Gaussian model this power is summed with the thermal noise power in the

loop and then phase timing jitter is computed.

The simulation has performed a similar technique replacing the sinc

function by the response of a Butterworth filter of desired number of

poles to a pulse. The integrals of the tail of the filter output over

time periods T are computed. Then the sum of absolute values of the

computed quantities is determined. Ignoring the thermal noise, the bit

sync jitter is computed as a function of the BT product assuming BLT = 1

where BL is the bit sync loop bandwidth.

Similar answers have been produced by analytical and simulation,

both techniques have produced close answers. To reduce the jitter

to '- requires that

BT > 2 NRZ

BT > 4 Manchester

Simulation has illustrated that the above BT numbers are not sufficient

to eliminate bias in the timing loop. For bias controlling, the

requirement is
BT > 7 NRZ

BT > 10 Manchester

-72-



I
Single Channel Phase and Amplitude Response

Ideally the channel is desired to maintain flat amplitude and

linear phase responses throughout the bandwidth of the link spectrum.

Any deviation from the ideal response will have adverse effect on the

carrier tracking and the timing loops. Analysis has revealed that

asymmetric RF channels introduce a DC phase error in the tracking

loop. Furthermore, asymmetrically distorted RF channels add a data

related interference to the demodulated signal. This interference can

cause severe loss of the bit sync performance if not controlled.

Clearly, the hardware specification must limit asymmetric channel

distortion to an acceptable level.

Channel imperfections have been examined via several examples.

Each example is used to determine the system tolerance to a specific

type of distortion. The final result is determined such that the timing

jitter caused by channel imperfection will be less than the VCO

quantization error of .03T or 2.5 ns. The acceptable phase and

amplitude distortions with respect to an ideal channel are given as

JPhase Distortioni < 3.50

INormalized Amplitude Distortioni < .1

The above restrictions permit a nonsynmmetric phase slope change and a

nonlinear amplitude response as long as the inequalities are not

violated.

The diagram on the next page outlines the RF channel distortions

and their effects on synchronization loops. The channel is modeled by a

low thermal noise linear filter where the phase and amplitude responses

are considered separately. In the former case (phase alone) a wideband
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I
CHANNEL PHASE AND AMPLITUDE DISTORTION EFFECTS ON CARRIER

I AND BIT SYNCHRONIZATION LOOPS

LINEAR

o NO BIAS IN COSTAS
o NO BIAS IN DTTL
* NO JITTER IN COSTAS ISYMMETRIC ASYMMETRIC
e NO JITTER IN DTTL
* SYSTEM DELAY * NO BIAS IN COSTAS o BIAS IN COSTAS

@ BIAS IN DTTL o BIAS IN DTTL
* NO JITTER COSTAS 0 JITTER COSTAS
s NO JITTER DTTL 9 JITTER DTTL
* SYSTEM 0e-y 0 SYSTEM DELAY

1AMPLIUE

FLAT

* NO BIAS COSTAS s NO BIAS COSTAS
o NO BIAS DTTL s NO BIAS DTTL
o NO JITTER COSTAS 9 JITTER IN COSTAS
e NO JITTER DTTL o JITTER IN DTTL
o NO SYSTEM DELAY 9 NO SYSTEM DELAY

1

I
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channel is assumed and in the latter case (amplitude alone) a phase

I equalized system is considered.

Each entry of the diagram is briefly explained in the following

I paragraphs, and whenever necessary each description is illustrated by an

example. The case of wideband nonlinear phase channels will be

discussed first.

Zero Jitter in Costas Loop

Section 2.4.1 gives the ISI noise power density in the loop as

2

Ps 12 m 2 1 2 2 2
SISI(f=O)=- [T2 I m JIG(f)I IG(f- T)I df- T(fIG(f)I df) ]sin 2

Tm

where T is the bit time, Ps is the bit energy divided by T, G(f) is the

distorted pulse spectrum, and * is the tracking phase error.

Notice that the above power spectral density is independent of the

channel phase response. In other words, only amplitude distortion

occurs in the case of ISI noise in the loop.

DTTL Bias

The DTTL is modeled as a mid-bit to mid-bit integrator. An error

Iterm is accumulated whenever a data transition is detected. As a useful

example to illustrate timing bias error caused by phase nonlinearity,

consider small phase ripple distortion. Therefore, assuming the

following channel model

1 H(w) = exp[-j(bow - b, sin w)]

i
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I

I and small ripple amplitude bl, the channel response to a pulse, P(t),

g with duration T is represented by g(t) as

g(t) = P(t) + - [P(t+c) - P(t-c)]

If c T/2, then

b1  T T

g(t) = PMt) + - [P(t+ i) - P(t- -7)]

The following figure illustrates g(t) as a function of time.

g(t)

t

Clearly g(t) is asymmetric, hence the mid-bit to mid-bit integrator is

bound to generate a bias error. Notice that for c > T, the small phase

ripple imperfection imposes no distortion on the DTTL (no bias and no

jitter).

Zero Costas Loop Bias

As discussed in the text, symmetric channels impose no bias on the

carrier tracking loop. This fact can also be seen from the phase noise

probability density function. The recovered carrier phase noise

probability density function is stated here for convenience
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I

+ 2R 4-+1/Rp(¢) ~ 1 /t-1-T+ cos * )

3 sin2 Q 41+/R - cos *

I
where Q is twice the phase error, R is the ratio of the ISI noise to

9 thermal noise power, and a is (Eb/NO) divided by loop (BLT).

Notice that P(O) is symmetric, hence 0 is mean zero.

IZero DTTL Filter

Figures 30, 31 and 32 of Section 2.3.3 illustrate that jitter in

DTTL is caused byy amplitude distortionwhile bias is caused by phase

distortion. Also the small phase ripple example discussed earlier can

be used to show that symmetric phase distortion does not cause timing

I jitter.

System Delay

Unequalized physical channels introduce time delays in general.

Next, the column under asymmetric phase distortion is considered:

Costas Loop Bias

I Equation 10 of Section 2.4.2 formulates Costas loop phase bias due

to asymmetric signal filtering (RF filter). The phase bias equation is

I restated here:

1 2 fG, (f)G* Q (f_____________

QB =  arctan(- 2 dG(f)G*Q(f)df d
fJIGI (f) I 'df- fI G Q(f)I-d

Gi(f) and GQ(f) are the inphase and quadrature channel responses to an

input pulse, respectively. It can be shown that the above bias vanishes

g for channels with linear phase response even if the channel amplitude

m
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response is asymmetrically distorted.

i DTTL Bias

It was shown previously that nonlinear phase response is the source

*of DTTL timing bias. Since asymmetric distortion is a special case of

nonlinear phase distortion, therefore the timing bias is also expected

for the asymmetric case also.

Costas Loop Jitter

Asymmetric channel hase response causes amplitude distortion in the

in-phase and quadrature channel responses. And imperfect amplitude

response will in turn produce phase noise jitter in the Costas loop.

DTTL Jitter

Like the previous case, asymmetric channel phase response causes

amplitude distortion, and amplitude distortion is a source of DTTL

timing jitter.

System Delay

Any unequalized physical channel will introduce time delays.

Now, the case of imperfect amplitude response will be considered.

Zero Costas Loop Bias

Equation (3) can be utilized to illustrate that channels with

linear phase and distorted amplitude do nt cuase tracking phase bias

error.

Zero DTTL Bias

With symmetric amplitude distortion there is no timing bias since

the pulse shape after passing through the channel remains symmetric.

However, asymmetric amplitude distortion could cause DTTL timing bias if

the tracking phase error is nonzero mean.
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Costas Loop Jitter

Equation (1) can be used to determine Costas loop phase jitter due

to channel amplitude distortion.

I DTTL Jitter

Figure 32 of Section 2.3.3 illustrates the DTTL timing jitter due

I to a Butterworth phase-equalized filter. The imperfections in channel

amplitude response causes pulse spreading. The symmetrically spread

pulses interfer with one another giving rise to ISI noise and timing

Ijitter.
No System Delay

I Amplitude distortion does not cause system time delay.

Note that if the RF filtering operation in the receiver is

performed in baseband rather than RF, the asymmetric column under the

nonlinear phase subtitle will disappear. A baseband filter, unlike its

RF counterpart, cannot be asymmetric.

IModulation Induced Tracking Error in the Carrier Tracking Loop
Reduced mod index modulation (APSK) does not totally suppress the

carrier leaving a residual carrier component for phase referencing in

the receiver. The reduced mod index modulated carrier can be tracked by

a phase-locked loop. 1PSK modulation allows one to measure the channel

m phase and amplitude characteristics to estimate channel quality.

The carrier tracking loop bandwidth and the signaling format

determine the amount of ISI related noise in the tracking loop. For

Manchester coded signals the IS related noise is negligible for any

loop time bandwidth product (BLT) much less than the dta rate. However,

I the case of NRZ format is quite different. It is shown that with high

signal to noise ratio and NRZ coding, the BLT must be less than .01 for
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acceptable tracking ioop performance. For a B LT of less than .01 it is

concluded that the 151 related phase jitter is about 50 (A = 600).

The power requirement of the APSK technique is investigated. It is

shown that with an index angle of 600 (versus 900 for BPSK) the signal

power must increase by one dB to maintain the same error probability as

the BPSK technique.

5.2 -Adjacent Channel Separation for Frequency Multiplexed Links

Whenever a single transponder is used for both reception and

transmission of data, separation of the receiver center frequency from

the transmitter center frequency must be large enough to avoid a

deleterious amount of transmitter power leakage into the receiver. It

is assumed that the transmitted power is 110 dB above the received

power. Two different techniques resulting in similar answers were used

to arrive at the minimum separation requirement.

For an NRZ signal of bit time T when both transmitter and receiver

filters are 6-pole Butterworth with BT 4, it is shown that a diversity

separation of 12/T Hz is sufficient for meeting the requirements

considered above.
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APPENDIX I

PHASE NOISE DENSITY FOR BPSK COSTAS CARRIER TRACKING

Considering a Costas loop utilized for BPSK carrier tracking, we

would like to study the effect of intersymbol interference (ISI) on the

loop performance. Since the problem of thermal noise interference has

already been treated in the literature; hence, the attention is focused
I
* on ISI noise alone. Let g(t) denote the BPSK pulse equation after

passing through the modulator and channel filters. The noise term

associated with the ISI process has been defined by1

1nI (t) a a g(t-nT)g(t-mT) sin 2
m n
mn

where * is the tracking phase error and

am = +y7s independent and equilikely

To determine contribution of ni(t) to the loop performance, the power

spectral density of nI(t) must be evaluated. In deriving the phase

noise density, it turns out that only the power spectrum of ni(t) at f =

0 has to be computed. To start, let's determine RI(T) = RI(tT).

RI(t,t) = En(t)n(t+t)

Rl(t,r) = E (t-nT)g(t+T-nT)g(t-mT)g(t+-m)sin 2 2
mnpq
m~n p*q

= (P2)12 ) v(t-nT)v(t-mT) sin2 2#
m n
m *n
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where v(t) =g(t)g(t+T) and P2
=Eaa),te

R(T) s v(t-nT)v(t-mT) - tf) sin 2 2f

Let

A (t -r) v v2 (t-nT)

B(t.T) =) v(t-nT)v(t-mT)

Using Poisson formula n

2 7rn

A(t T) n eF

n v I
and the averaging of A requires that in the above equation n =0

A( ~ = At--T) T 4F V2 (f)I f=O

Now let's compute F 2(f)

V 2(f Fv(t) *Fv(f)

V 
IAatre

F(f) = F (f * (T

FV(f) = f G(.X)G(f-A)e j 2 7FT dA

where G(A) is the Fourier tran,.forn of g(t)
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F 2(f) f [f G()GI-~ j21X dX[ (%Gfr-~ 2a

A(T) ff 4.)~)vX)(j-~ j2I 7r +a do di

Next let's comPute B(T) B(t,tr)

B~tT) = 1(m+n)t -

B (T) = T(t , rT = W(! n n...j

where W(fl,f 2) =Fv(fi)F~( 2

W -1 _ n) =[f G(X)G( n~ XA)e j 2 7rXT dA][I G(a)G(_ n. Aej 2 va-dx

B(T) - XIG(A)G(cz)G( n -X)G(- n. a~ 2Fa )Tdd

si 2 R ( )B(T) -A(-)

sn2 P5

S 1(f=O) = F(B(T)-()f P2 *i 2 211

F[B( T)-A( T)]f G=)(-)~ 1~

SJG()G(-X)G(r.-Gxrdr
Tm
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B ut

G()=X =()*X IG( 12

cIr...n si 2(', S r 1 2 2i ll ~ ~ ~*'-) )

1~ f IG(X)1 21G(r-.x)I 2d~dr

Notice that

Jf IG(.XH 2 IG(r-x)12 dxrU = [j jG(A)1 2 dA] 2

1 P22 .

S()= [7 LIIG(fHl2IJG( -a -f) 2 df - 1 (f IG(f)I df) 2 sin 2 2
T m

Thus the 151 noise spectrum S, (0) is given by

S 1 IGf i 2 G f1 1 rGfI 2 ,i 2 2

72 -T m T IGfHIG TJU - LJIf~,df] in2

Example 1: .t

L I-

-T T- *.

-Tr



I

For this example

p2
sP;° T [ T- sin 20. 0

S1(O) 7- s-T .2 2

Example 2

IT
I -T1"-

- T T

t _

-1I
r

P2 T3  T T2  2
(Si(O)) = s T7[ J- sin 2 20 0

Example 3. Assuming T =1 and the bit energy is unity, the following

~power spectrum is given

SM = 1I G(f)12

SCompute 0otherwise

SN x -f " s2(f>df + 2 "s(f)s( P-f>df - T(J" s(,>f) 2

II
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J s2 (f)df I

(f S(f)df) 2 1

Thu s

N 1 + 27 [(N-1)c - !N(Ni! for N-I1ecN

We notice that

NX = 0 for c 1,2,3,...

But Nx = for c= 0. The following figure illustrates N~ as a function

xx
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NX is a maximum for

max for N 23,..

I and

* N=

xL=ma 4NN-1)
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-CARRIER TRACKING LOOP PHASE NOISE

RELATED TO APSK MODULATION

Consider the following observed biphase modulated signal when

I carrier power is not totally suppressed

s(t) = v[ [sin A X amg(t-mT) + cos Al vFs cos(w t+,) + n(t)
m

where g(t) denotes the 6BPSK pulse equation after passing through the

channel, A is the modulation phase angle, Ps is the total power, w0 is

the carrier angular frequency, 40 is the carrier phase and n(t) is white

Guassian noise with one-sided spectral density NO . To track the

carrier, the following phase-locked loop can be used.

f

In the following, we will try to determine the density function of the

i phase noise term * = for a first order phase-locked loop. If K

denotes the loop gain (phase detector gain), the tracking error can be

j expressed as

I L__ -88-
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e(t) s cos A sin 4K + n1(t) + n2 (t)]

where

n1(t) = vfsK amg(t-mT) sin ¢sin A; am +l
m

Sand NK

n2  = white Gaussian with two-sided spectral density

To apply the results obtained in Reference 1, we must compute Sn(f=O),

where Sn(f) is the noise power spectrum. But,

Sn(f) = S (f) + (f)
1 21

Rn(t,) =K 2Ps ama p g(t-pT)g(t+T-pT)sin 2 A sin 2

(t~~~r) q5  aa i

= K2ps ) g(t-PT)g(t+T-PT) sin2 A sin2

p

2,
P PP

Rn( ) n , H(TJ e K sin A sin *
p

P s2 2
T H(O) K sin A sin *

where H(f) denotes Fourier transform of g(t)g(t+3)

Ps ~ G) 2 eJ2ir)3 sin 2
Rn() = S dIG( )l 2 e K sin A sin 2

where it is assumed that g(t) is real. Now Fourier transforming Rni (T),
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=la

P sK  2 n2  n2

Sn 1 (f) = Tf IG(X)I 6(f-A)d) sin sin

= T IG(f)12  sin2A si 2

J1
Thus

Sn (f=0) P - G(0) 2 2 2 n 2

Now to be able to use the exact results in the reference, let's

introduce quantities Nx and N' so that

K2  2 K2

Sn(f=0) = 2 N sin 2 + K2 N6

where
P 2 2Nx  = 2 T s G(0)I 2 sin A

But since G(0) T, thus

Nx  = 2TP s sin 2 A

N6 is given by

N6 = 2N0

Now let's define

R Nx  TPs sin 2 A 2R= -Rb sinA

0O No

and compute

No 1 2SL(O )  T ,I IG(f ) l df =

0 --
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and 2
Rb cos A

a= 2BL T

I where BL = K/4 is the loop noise bandwidth. Now using equations (3.3)-

(3.5) of Reference 1, the density function of f is given by

1 (1!*)+cos * c/2R[1+ 1 ]112
! P(W CO R"

(1+R sin2 €) -cos *

where CO is the normalizing factor

BLT tan 2 AtL
and for large R

I /1+ 1 +cos f 2
1 Rb sin A 1/4BLT tan AI ~P(,) = C0

A = +Rb sin 2 A sin 2  
1+ 2 - cos

R bsin A

It is desirable to have as small jitter on * as possible; hence, p(,) is

desired to be concentrated around t=0. To achieve this, the following

inequality must hold

1 < 1 2

or< 4BLT tan AI or
1

BLT < 2
4 tan

For example if A= 600

I BLT < .08

We can determine p() if R0 is given. Now let's compte p(O) lbr R b0 b

1 10.

-91-

I - - . . . .". . ". ... , : - - . . ' . ... . .. .. .. - ' '



AD-4112 69 LINCOM CORtP PASADENA CA F/O 17/2.1
PH4ASE NOISE STUDY. ATTACMENT I,(UI
OCT 91 Nt A NAAO. F DAVARIAN NOOOI"A-1-233U

UNCLASSIFIED TR-10S2-0461 "A.

~ mEEE~hhh h



11W12 1 12 .2I
11 1111 1.

I1 _L IIII 6

III15 IIII~ I 1.--6

MICROCOPY RESOLUIION TEST CHART

NA__ ONAt A (. ._'



I
I

+ Cos , 1 P(4),

R BLT=. BLT=.Ol
+ I ~Cos A +Rb sin 2 A sin 2

R Rb sin Z Ab

1 0 32 1 16 1012

5 30 .97 14.6 .6x1012

10 25 .9 11.8 1.4x10 11

15 20 .8 8.8 2x1010

1 20 15.5 .73 6.5 2.4x10 9

I
As can be observed from the above table, for BLT .1, p(f) drops slowly

I with * increasing which means a large standard deviation of *. But for

BLT = .01,p(O) is decreasing rapidly with increasing #.

[1) Davidov, M. A., "ISI Effect on Synchronization Loops," Ph.D.IDissertation, University of Southern California, Los Angeles, 1980.
r [2] Papoulis, A., The Fourier Transform and Its Application, McGraw-Hill,

New York, 1962, pp. 131-133.
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APPENDIX II

* ASYMMETRICAL RF FILTERING EFFECTS IN CARRIER AND BIT SYNC TRACKING

Example 1.

Hi(f) = cos af + jsin cif f > 0

H, 1(f) = cos Of + j sin of f 4 0

H (f) = Hl(f)+H 2(f) _ cos cf+cos of +jsin af+sin of
p 2 2 2

sin of sin o~f - Cos Of-Cos ciff

H (f)=
q f

-sin of-sin af + Cos Of-Cos aff0

H(f)H*(f) = 1 o af Sn 1f + o 8f sin of f>O

= 1

of a sin d? + 1ZCos Of sin Bf) f<O
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or

H (f)H*(f) = sin (fa)ff

= - .f<O

IH (f)l 2 - MH (f)12 = cos(cl-O)f

2 2
J IG(f)2 H p(f)H*(f)df f [sin 20f-sin 2af3IG(f)j df

P p 0

fJG(f)2[IHp(f)I 2 _ IH (f)j2]df = 2 fe cos (a- Bf) G(f) 2 df

p p 0

Hence

-I IG(f) 12(sin a)f

B arctan( 0

j IG(f)l 2cos(cz- 1)fdf
0

For example if 13 = -a

IG(f) 2sin 2 xfd
= arctan( 0

f IG(f)I 2cos 2adf
0

Let's investigate the bit sync (DTTL) performance in the presence

of the channel characteristics defined in Example 1 assuming that

e = (a-a)/T <( 1. The Q channel transfer function for small 
phase

asymmetry is given by
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i or

I HP (f)H*(f) = sin (B&-a)f f;,O

I = " [ ') f(O

IHp(f) 2 - 2Hp(f)l2 = cos(a-A)f

2 2
f IG(f)I 2Hp(f)H*(f)df = f" [sin 20f-sin 2af]IG(f)I df

_-, 0

f IG(f) 2 [ I (f) 2 -IHp(f)l 2)df = 2 O cos(c-Bf) IG(f) 2 df
p p 0

Hence

-f IG(f)I 2 (sin O=)f
1 arctan 0 

I IG(f) 12cos( a - )fdf

0

For example if = -a

I IG(f)I 2sin 2afdf

1 0

I Let's investigate the bit sync (DTTL) performance in the presence

of the channel characteristics defined in Example 1 assuming that

e = (a-B)/T << 1. The Q channel transfer function for small phase

I asymmetry is given by

I
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Hq(f) * ~Ic-BI Ifi(cos "'of + j sin cB f) f <1

The input signal to the bit sync has the following structure

sMt = YO(t cos *+ sQ(t) sin*

where

S (t) = I; g1 (t-mT)m
and

gQ(t) = P(t - + P(t- 0)

where P(t) is a pulse with duration T. Hence, if # is zero or sQ(t) is

negligible, the perfect sync in absence of thermal noise is achieved.

Notice that sl(t) is symmetric around

The tracking loop phase bias t~ can be computed from

J G(f)I1 (sin 0-a)f

T .arctan(- 2)

I G(f)I1 cos(a- B)fdf
0

But fr ~ - <<~ 1, we may write

sin (0-a)f (0-a)f, f

Hence

or

sin

Signal SQ(t) is given by
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SQ(t) = gQ(t-mT)
m

where

gQ(t) = P(t)*hq (t)

Since Hq(f)is linear in phase, hence g(t) is symmetric. Consequently,

the bit sync will have no bias error. To compute an upper bound for the

jitter, the area under the tail of gQ(t) must be evaluated. To proceed,

let's observe gQ(t) in the Fourier domain.

j-f
G Mf =.P(f)f * sgn(f) --

Delay .j (t) j

In the above equation the fact that the signal is band limited has been

ignored for simplicity. But

p'(t) = 6(t- 6) - (t + )

and

sgn(f) - 2

t

In case of a practical band limited signal, for example, band limited to

I/T, the function 2j/t must be replaced by [(1- cos(21t/T))/jtr).

However, for simplicity the function 2j/t is used here. Hence at is

given by

t Tc [ 1 Jdt = ln 3 sin*at - t t+-" N 3
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I or

at 
1 n3 2

If tA = c-B/2w, and BLT denotes the time loop bandwidth product then

Ot 1n3 2__ t

Example 2, ISI Distortion in Costas Loop Due to a Channel with

Nonsymmetric Phase Ripple (Small Ripple Amplitude)

H(w) = 1 bow-b I sin(cw+eO)

Using the technique in Reference [2] and assuming cos[b1 sin(c +e)] = 1

and sin[b1 sin(cu+e)J = b1 sin(cu'e). The two portions of the

asymmetric channel are given by

Hj(w) = b1 sin(cw*6) sin bow+ cos bow

+ j[sin bow-b 1 sin(cA*e)cos bow]

H2 (w) = b, sin(cw-e)sin bow+ cos bow

+ j[sin bow -bI sin(cw-e)cos bow]

Hence [2),

H p(w) = [cos bow + j sin bow] + b1 cos 8 sin cw[sln bow-j cos bow]

Hq(w) - b1 cos cw sin e[cos bow+ J sin bow]
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To compute the phase bias, OB, let's compute Hp(w)Hq(w)

H (w)H*(w) = b cos cw sin 1 - jb2 sin 2cw sin 26p q 1

f JG(f)I 2Hp(f)H*(f)df =b i sin 8 f JG(f)12 cos 2icfdf

If we assume

J IGf)2IJpH1"Iq ) 2]df  f JG(f)12df

f IG(f)12 cos 2wcfdf
B= l sin e

f IG(f)I2df
0

or

I4BI < b1 sin 6 if c#3

See the figure below.

C

Now, employing a technique similar to the QPSK tracking loop of

[1, we may compute the jitter in the loop by computing two independent
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jitter terms attributable to the I and Q signals, respectively. Note

that in reality these terms are not independent and that there will also

be cross terms. However, to simplify the problem the above approximate

technique for computation of phase jitter will be used.

Adopting similar terminology as in [1], we compute the spectrum of

ISI related noise

Snl (f=0 ) = B sin 2 2@ + C cos 2 20

where

C = 2P 21  1 f IG(f) 12IG(m _f)1 2 H (f)H*(f)H (m~ -f)H*(m! -f)df
sT m Tp q pT qT

For simplicity the following approximation is made

C = 2P 2-1 f IG(f)I 4 IHp(f) 2 IHq(f)l2df

2P2_ s2 4 2os2cfb i2
C - [f [J IG(f)l cos cudflb2 sin e

T
But

I IG(f)f 4  =2 T
3

Hence

C :4 P2Tbl sin 2 e

Next, let's find the thermal noise related term

K2

Sn2 (f=O) 
= K2

whereI
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N6 = NoPs( 1f JIG(f)1 2 df +N-J IH(f) j4 df)

where

J IH(f)14df = Bw

No

N6= N 0  " T + N BW)

B N
2

NP s + w0O

But
R PsT N = NP BwTNO

b NO/2 0 os 2Rb

Assuming Ps is unity,
B T

N6 = N° ( + -b

Hence

4 P 2T R RPs

C _ T b2 sin2  = 4 b 2 2 eRy N6 01 B T -i 3 -f- TB i

N o~ + R + Rb
b Rb

= 4 Rb b2 sin 2
y 3-i+ TFw  1w

Now assuming Rx=O (Rx represents the inphase signal distortion), we may

compute the jitter due to the Q signal

S() No 1

NO 1
-100-
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R Ri

Rb Rb 1

(1+ wJ
Ab

But for small Ry and Rx=O,

p(20) = exp( cos ej

or Y

p(2 ) = exp[a(l- 4-)]

p(20) = e e-

This is a Gaussian function and hence the standard deviation is

1
02, -

or

7 TB / TBw/1+ 1+-

bor CFO Rb
27-JL oo -Rb/BLT

For example if TBw=5, Rb=O, BLT=.l

1+ _ .06 radian or 3.50o€ : :ZVTO_6

Note that for small phase ripple the above jitter does not depend on the

ripple amplitude.

It will be shown that the ISI distortion in the in-phase channel

for this example is relatively small, and hence, the phase jitter due to

thermal noise is the main non-DC distortion component in the loop. The

ISI related term is computed as [2]
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NX = p 2 J JG(f)J2JG(m -f)12df -1 (IfIG(f) I2df)2]
I -=JT

Also,

G(f) = IP(f) 2IH p(f)j 2

where P(f) is the spectrum of a pulse with width T, and

IHp(f)I 2  = 1 + 2b1 sin cw sin 2b0W

Since the exact computation of Nx requires a computer, the following

bound can be obtained by observation

N 4 2blP 2 T

i 1s

Next the thermal noise related term is obtained

NO  TBw
N6= NoPSI( + !- Bw) = NOb+ w

The following ratio illustrates the ISI power relative to the Gaussian

noise power

R= Nx b Rb

ir + b

where
P Tb

R b - N

For moderate values of Rb and small bl, R is a ratio smaller than 1.

Hence for the sake of simplicity, ISI contribution to phase jitter is
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I

ignored at this point and the thermal noise related jitter is computed

using the Gaussian model,

2oB =

# Rb

i.e. for Rb = 10, BLT = .1

2a .1 rad or a, = 3 deg

Previously we had computed o to be 3.50. In practice, however, due to

ISI and also Q-signal interference, jitter will be more than 3.5

degrees.

In summary, for a phase ripple amplitude of 6 degrees, Rb = 10,

BLT= .1, and BwT = 5, we have

0 3.5 degrees

B 6 degrees

Let's investigate the bit sync performance in presence of phase ripple

of form given in Example 2.

The waveform s(t) entering the bit sync (DTTL) has the following

from

s(t) = sI(t) cos *+ SQ(t) sin #

where

s I (t) = I gI(t-mT)
m

SQ(t) = ) gQ(t-mT)
m

and
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l(t) = p(t)*hp tW

gQ(t) - p(t)*hq(t)

where p(t) is a pulse with duration T. Further, let h and hq be the

inphase and quadrature channel impulse responses, respectively.

To observe the bit sync performance for the two extreme cases of e

= 0 (symmetric channel) and e = w/2. For case of e = 0, the I and Q

signals are given as

bi
g1(t) = p(t) + T- [p(t+c) - p(t-c)l

gQ(t) = 0

and for the second case of =/2

gl(t) = p(t)

bI
gQ(t) =  [p(t+c) + p(t-c)]

Case I will cause no jitter at the DTTL (phase distortion). The jitter

attributed to Case II is found from the following integration

If BLT denotes the time bandwidth product of the loop and sin = ,

the normalized jitter is given by
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Let

at  4 .02T

Then

1 b2 47T -'.02T

or

.2

Since BLT < 1 therefore the above bound does not imose any serious

restriction on bI. The worst case bias at DTTL occurs when e = 0. In

this case the bias equals 1/2 blT. To draw a bound on b, the above bias

must be less than .03T

1/2 B T c .03T

b ' c .06 rad
or I

b 3.50
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I

Example 3: Suppose the channel amplitude response contains a slight

asymmetry of the form given in the following figure:

CNIq IJtT~~

Ct

The objective is to compute the inphase and quadrature signal componets

in order to investigate the resulting ISI effect in a first order Costas

loop. The signal format is NRZ, and modulation format is BPSK.

To compute the inphase and quadrature channel transfer functions,

let's apply the method used earlier

Hi(f) = I + a sgn(f)

(El)
H2 (f) = 1 - a sgn(f)

Hence

H Hl(f)+H 2 (f) I
Hp(f) = 2=1

(E2)

H H(f) 2 (f)-H 1 (f)Hq~ -n- --- - j sgn(f)

Since the product Hp(f)H*(f) - j sgn(f) has odd symmetry, the tracking

loop will have no channel DC related phase error. This observation

implies that the channel effect on the bit sync (DTTL) can be assumed
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negligible if the tracking loop phase noise can be kept under control.

Here we wish to specify distortion parameter a such that the ISI

contribution to the phase noise be smaller than the phase noise due to

the thermal noise with moderate Eb/NO values.

From Equations E2 it is clear that Hp(f) does not distort the

signal in any way. Hence, the inphase component of the signal cannot

cause ISI related noise in the loop. Now, referring to Equations 16,

Sul(f=O ) = 0 and Su3 (f) is proportional to a2 where Su2 is proportional

to a4 . Since a << 1, su2 can be ignored. Employing the QPSK technique

of Reference I we may determine the phase noise by first computing

parameters Rx and Ry. Since sul(f=O) = O,thus Rx = 0 and Ry can be

computed from Su3(f=O).

S (f=O) "P 2 [ _L I fG(f)121G(-n -f)I 2Hp(f)H*(f)H (-n -f)H*(!! -f)dfu3  m T 2 T q pT q T

Since Hp(f) = 1 and Hq(fg) = aj sgn(f)

S (f=O)- ) I IG(f)I 2 lG(m -f)l2sgn(f)sgn(f- M)df
U3  T m 2 T  T

2P2a 2
S T = 2P2 Ta2

T2

and
BTN6 = NoPs[I+ IB ]

PST
Rb N012

Thus
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I

Ry ( a2  Rb

and Rb
Rb I
BLT 1+ BT

rb

The phase noise density function is given in [1l and is written here

a tan cos 2@)pW€ exp( -LVYco•

h+R y cos 2 2 y

But for small Ry, tan-l (VW cos 2 *) A- cos 2f and assuming 2t < 200
y y

p(*) "exp acos 2* exp - a42
2

p(#) - exp(- ± )--

Hence

42 1

For example if Rb = 10, BT = 5, BLT = .1, a = .1

R .01 01+, -=  =  .067
y' 1+.5 r3

10 1 = 1000 61
.1 1+.5 15

since Ry < 1. Thus

0 W - .6 rad

or z47

0 ft 3.50

1
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The conclusion here is that for a .1. The IS! distortion in the loop

can be ignored. This assumption is true, in general, 
if the following

approximation could hold

tan ' q - r

To check the validity of the above condition, 
let's write tan (x) in its

expanded form x < 1

3-1 '3

tan x = x

Thus if x3/3x = x2/3 < 1 1, then the above approximation is valid, 
i.e.

37 3

or
R <( 3

or 2

BT
b

1+ BT2b
a 2 << 3 -- bb

Let's plot f(Rb) (1+ ET-) for BT = 5

I
J .-109-
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I

I.

C? 12o16DI5

The above curve can aid us in determining an upper bound for a. If Rb =

10 dB is used, the following upper bound on a can be asserted.

As another example let's consider a symmetric channel with small

amplitude ripple and equalized phase passage of a pulse through a

channel with small amplitude ripple introduces the paired echo

phenomenon. To formulate the ISI contribution to the first order loop,

let's rewrite the noise power spectrum given in the appendix

SI~=O)= ZPs sin 2 c L I* f IG(f)I2IG(m -f)j df

1 2 2

I T JrIff IG(f)I IG( -f)I dfd X

Let z(f) IG(f)IZ*IG(f)12. Hence

I N 2SI If=O) =p2 P2

3Nx k sin 2# Tm

-110-
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But if z(t) =F1{fz(f)J. then

X z( ) ' T ) z(mT)

Thus

Nx < [ z(mT)- z(O)]
m

But if amplitude ripple period is equal to I/T, then the following pairs

of transformn figures hold.

;/-T-- fa

'&14

.. I

I I

71 7 zo

~t



I
N < [T {2 a 2 ) + 2a 2T2 -T2 (1+a

T [2a2T2J 2Ta2 P

Also from [1]

NOB
N; = NoPs[I+ _ J

If
PsT

Rb N0/2

N = NoPs1+ RTI

and

N 2Ta 2 P2  Rba 2

R X T bTR - ' 1 RN B_ T ] 1 + B _ ]T

Rb Rb

Rb Rb 1
BLT SL(O) - 1+ BT

L Rb

For example if Rb = 10, BLT = .1, BT = 5, a .1

0O x .0 1 _ .1 1
I' 10 1 .... 1

= 10 1 100 1 1000
and .1 1+.5 1.5 -'-S and

1 - 1000 1 500 125
2,7 2/ITI3. 4 2

I
-112-
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The phase noise probability density function for small * is given by [1)

4+cos 125i P( ) = 4--cos €

Letting cos €= 1 - 212 and setting the second derivative to zero

cos 2t > .988

2 o 90

Hence the jitter is less than 4.5 degrees.

This jitter will reduce the DTTL power by a small amount. If BLT

were one hundred times smaller, i.e. BLT = .001, thus

1 5..- 10'

a =

and

a 1 105 10 5= = 12500
R -- -T -F

Hence

cos2  .999

and

2 0 = 1 deg

For BLT = .01 24o = 3.2.
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The ISI in the bit sync can be approximately computed by computing the. •

ISI contribution to one bit (worst case)

T1
f lal + Ial]dt = aT
0

.

with BLT as the time bandwidth product of the bit sync (

at  aT, (°
or

C~ a AFjTL

If a .1 and BLT = .01, then

a .01
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